Flood Requirements/Sealed Septic System Definition

Below are the general requirements that Yavapai County Development Services Environmental Unit utilizes in cases where a sealed septic system is needed (as determined by YCDS Environmental Unit and/or Yavapai County Flood Control). Some variation may apply in cases where we have information that erosion or scour depths may be deeper than the proposed depth of the leach lines as determined from an engineer’s report or from information obtained from the Flood Control Unit.

Each site will be individually evaluated during the routine site investigation (“perc test”) or during the septic system application review. Specific recommendations will be made by a Development Services employee.

In general, the leach area will be installed deeper than usual (3’ below natural grade or as noted) to minimize the chance of a small erosional flow breaching the integrity of the leach system. For a temporary flow (one day or less), this will minimize the downward saturation from the flood flow.

Septic tanks shall be installed in the usual manner and sealed to prevent external water entry. Utilizing caulk or other adhesive-type substances on the tank lids is not recommended, as the sealant materials have a tendency to permanently seal the tank closed, preventing routine maintenance. Instead, rubber collars, grommets or tanks manufactured with screw down lids should be used. Risers shall be installed as necessary and sealed to tank. The tank lids must come to within 6” of grade to ensure access to the tank for pumping and filter maintenance.

Because of the need for at least 3 feet of cover over the trenches, the perforated pipe must be a minimum thickness of SDR 35.

In addition to the above noted requirements, a Minor Variance is required by the Flood Control Unit to place an on-site wastewater disposal system in a flood way. While not necessarily required, you may want to consider using an Engineer to design a system in a flood way. Systems placed in a flood way can be problematic due to the complex nature of flood waters and other variables inherent to that environment.